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process which is observed in additive, white, gaussian noise. An exact
stochastic differential equation for the least squares filter is derived
when the signal process satisfies a nilpotency condition. It is shown
that the filter is also bilinear and moreover that it satisfies an
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ways of reducing filter dimensionality discussed.
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OFITMAL FILTERS FOR NILPOTENT ASSOCIATE-AlLGEBRAIC BILINEAR SYSTEMS

SHI1R1SH D. CHIKTE &nd JAMES TING-HO LO
Department of Mathematics, University of Maryland Paltimore County
Baltimore, Maryland

1. INTRODUCTI1ON

Recently, optimal estimation and detection of signal processes
generated by bilinear dynamical systems has been the subject of investi-
gation in a number of articles, e.g. [1], [2) and [3]. Problems of this
type arise in such practical applications as inertial navigation,
satellite attitude control and angle modulation.

We consider least- squares filtering of stochastic processes gen-
Gauss-Markov process observed in white gauos1an noise Jﬁv1xonment In
view of the work by Fliess [4] and Sussman [5], there is strong reason to
suspect that the above class of systems can approximate a much wider
cldss of nonlinear systems. The existence of finite dimensional, re-
cursive filters for such processes was cstablished in [3] under a some-
what weaker lic-algebraic nilpotency condition. 1In the present paper,
explicit stochastic differential equations realizing such filters are
derived by "closing'" the infinite dinensional nonlincar filtering equa-
tions of Kushner [6]. It is found that the filter structure is not only
bilinear but it also inherits the nilpotency property from the original
system.

The next section presents the problem formulation. The third sec-
tion contains the derivation of filter equations. The final section
concludes with an example and computational conmsiderations.

2. PROELEM STATEMENT

We first delineate the class of nonlincar filteiring jroblems
addressed to in this paper.

We are given the standard linear 1to models for the signal process
{g(t)} &t 20 and the observation process {z(t)} ¢ >0 1espectively,

2s follows.

The signal model:
|

dE(t) = F(t)E(t)dt + Q?(t)dw(t) , t 20 (2.1)
The observation model:
dz(t) = H(t)E(t)dt +R'?l‘(f,dv(t), t >0 (2.2)
vhere w(-) and v(-) are standard N and P dimcnsional independent

Wiener processes respectively, g(t)(TRN v z(t) RYP, £(0) is a vero mean
gaussian random vector independent of w(-) and v(:) juocestes wnd F(.),
1

2 1

Q%(-), H(-), RZ(-) are time-dependent matrices of appropriate dinmensions
with Q(t), R(t) positive definite and continuously differentiazble for
all t.

Now consider a process {f(t)} ¢ >0 generated by a bilinear

« ]




AT Y ) A S - N A P I b e P S

N N NS o T Wy g,

dynamical system of the following form:
N
dx(t) = (A + I Bt (£))x(t)de, x(t)e R, € 2 0 (2.3)
i=1

where x(0) is a gaussian random vector independent of ¢(0),

{Q(t)} t 20 {V(t)} t20"

We are interested in an exact, finite dimensional system of sto-
chastic differential equations for the least squares estimator

E[x(t)lzt] A% (tlt) of x(t). It is well-known (see e.g. [6]) that i

this, in general, is not possible. 1In this paper, we intend to derive i
such a filter and study its characteristics with the proviso that the .

matrices A and B " in (2.3) satisfy a well-known algebraic
id i=1

property called nilpotency.
Definition 1:
An associative algebra efQ? of matrices is said to be nilpotent
(of order K) if there exists a positive integer K such that the (matrix)
product of any K or more matrices in vanishes.
Assumption 2:
The associative algebra GV&D generated by the set of matrices

k :
{hdA(Bi)li=1,2,. R k-O,l,...:} is nilpotent (of order K, say) where

>

oy

o
AdA(Bi)
and

[a, Ad (31)] A Ad (Bi) Ad (Bi)A

nw>

k
AdA(Bi)

for k = 1,2,...
Remark:

Assumption 2 is stronger than the Lic-algebraic nilpotency assuup-
tion made in [3].

3. THE STRUCTURE OF THE NONLINEAR FILTER

The filtering problem posed in the last section, was shown to be
amenable to solution in [3]. 1In the main theorem of this paper that
follows shortly, we explicitly exhibit the structure of the nonlinear
filter and study its characteristics. We begin with some lemmas.

Lemma 3:

The input-output map realized by the system (2.3) satisfying
Assumption 2 .an also be realized by a bilinear system which is a
"direct sum' of (a finite number of) finite dimensional systems of the
following form

s ey 34
ax(e) = A+ = n: £, (6)) x'(t)dt, t 20 (3.1)
g1
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where,

Al 0; i =
Kk N & | 3
|
7k ?\ \Az \ !
A = < . ~ (3.2)
t N N I
[} N N N
] N i < ;o
- OO . AM'k 4
with A;(, i=1, .5, Mk being Ji X Ji Jordan blocks, and
2 -
k
0 Bi,l 0 - -0
! k
E-k = ; g i Bi’z : \—-? 3
. et ! B N >3]
| ~ 1
N k
| 0 B,
| I,Mil.
(e e - 0,_

y k oE Ty > = R
with Bi,j P () R j—l,...,Mk 1 being Jj X Jj+l matrices.

Hence, the associative algebra ~{kd; (§;)|k=0 1 . g-1 ﬁ} AA
sl ynieas A

is also nilpotent of the same order K.
Proof:

The proof follows closely the ideas in the proofs of theorems &
and 6 of Brockett [7] and hence is kept brief.

Using the transformation z(t) = g x(t) and applying the Peano-
Baker formula, we find that the Volterra series solution to (2.3) is
given by

t N
x(t) = [ + f AeE - ol)(iEIBigi(Ol))EAcldol
to N
$I} 1At -01)( 5 Biﬁi(ax))'eA(cl -0,)
oo f=1
N Ao
(j)jlajgj(az))e 2do. do, + ........ ] =0y . (3.4)

It now follows from the Baker-Campbell-Hausdorff formula together with
Assumption 2 that all the terms in (3.4) beyond the first K terms will
vanish.

Now, let the Jordan form cf A be gize? by diag {AI,AZ,...,A;}

XJ, . let K L 5 J» 15,00, with

where A1 is, say, J i LN

i




K, £ 0, and define yi ¢ [xKi+1.,.... xKi : i i , i=1,...,8 . Recall that
; +
E eAt consists of JiX Jk blocks, i,k=1,...,s which can be written as

s At

‘;i 1Cze £ I& , for some Ji X J‘ matrices Cﬂ and J! X Jk matrices Dk.

With these remarks in mind, it is not difficult to sce that the rth order
term, 1 s r < K, in the Volterra series (3.4), for the subset yi(ao) of .

components of x(oo), i=1,...,s, consists of groups of terms of the form

g, 0, O A, (0,-0) A (o .-0)) Ao
(o Sab | AN o
o g g iRt R e
le 1 2 r
©o0 o m,...,m =1
r

r

.W E'm.(gi)dai

i=1l i

But each group of this type is realizable by a system of the type claimed
- ~_ 9 N
in the lemma with A and {hi} j=1 2% in (3.2), (3.3) (see thecorem 4 of

[7] for details). The final assertion regarding nilpotency is obvious if
we note that A is upper triangular while Ei’ i=1l,...,N are strictly

upper triangular.
1 Lemma &4:

Consider the signal and observation models of (2.1) and (2.2)
respectively. Define a (vector) process -{y(t)} £ =0 by

N
dy(t) = Dy(t)dt + I E, & (t)y(t)
i=1
N . . . : .
B where D,-{E{} 4=1 are matrices of appropriate dimension,
y(0) is independent of ¢(0), w(-) and v(:) processes. (3.5)

] Then ?(tlt) Al E[y(t)/zt] satisfies the following stochastic differential
: equation: :

N
dH(eie) = pY(ein)de + = B ET(E (0)y(e)]at
i=1

+{E' Iy ®] - St eln} iior v

$¢0]0) = E[y(0)] (3.6)

where, ;
|
‘

ES(-) 2 E[-12%] 2 B[} {z(-r) | 0515t} )

dy(t) = dz(t) - H(t)z(tlt)dt " »




Proof:

Apply the Kushner nonlinear filtering equations [6] to the signal
process (yT(-),tT(.))T with 2z(-) as the observation process.

Lemma 5:

Let x = (x0’x1""’xn)T be a gaussian random vector with mean

= T =
vector m (mo,ml,...,mn) and covariance matrix P [ij]i 5= o
We then have the following relation:
n
E[ T x.] = E[ T X ] + Z PojE[ W x ] n>1
1=0 * O e2 &
i#)
mom1 + Pol P (3.7)

Proof: See e.g. [8].

We are now ready to state and prove the main theorem of this paper.
Theorem 6:

Consider the signal process -{x(t),g(ti} t>0 evolving as in (2.3)

and (2.1) and the observation process {;(t)} as in (2.2). Assume

t20
that (2.3) satisfies Assumption 2. Then the least squares filtered
estimate Q(tlt) can be obtained via the following finite dimensional
system of bilinear stochastic differential equations with suitable initial
conditions:

X % N B2 N % AX

dx(tit) = (A (t)dt + = B, gi(tlt)dt + I €, odu(t))x (t]t)dt

i=1 i=1

Xele) = 1251ty , tzo0 (3.8)

vhere g(tlt), t 20 is given by the standard Kalman-pucy filter [9],

A’ ( ) is a deterministic matrix time function. L,-{ﬁ. ,C } ?=1 are

constant matrices, and
T A t T -1
n(e) 2 [y (6) puy(e)--- el % J W (1) R()AV(Y)
o

is the modified innovations process.

Furthermore, the associative algebra generated by the following
set of matrices,

k
- (8,") o t 20
( (Ad *(A (t))) j i,j=1,2,...,N,k'z—o,l,z,..-}

is nilpotent of order K.

Proof:

From Lemma 3, it is clear that we may take - without loss of
generality - (2.3) to be a stationary bilinear system in which the matrices

A and {b{} T-l are of the special form stipulated in (3.2) and (3.3)

respectively. Furthermore, we shall assume for ease of exposition, that

5 e
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= diag(al,az,...,aM); consequently Bk ¢ [bki’j] is such that

4,4 0, j#i+l . ;
bk S K , k=1,...,N and xi(O) =0 a.s. for i <M. For,
b, § = i+l
2’

it would become apparent in the sequel, the proof for the gcneral case
would involve little more than additional notational cauplexity.

We now apply Lemma 4 to (2.3) with the above mentioned specialization.
With the help of Lemma 5, the resulting differential equation analogous
to (3.6) can be written in the following form:

N
ax(eje) = (A + 5 B, cleniernyae + 2 Bjxj(tlt)dt
-1 1
~ j 4 A T
+ [x7(e]t), x (tlt),...,). (t|c)]u (YR (t)dv(t) (3.9)

where the "augmenting states" appearing in (2.17) are defined as

£ T
S ( ) = [xl( ) xz( Ys- --:x;(')] s als250 N

N M-q 0 91 © a . (o -0_..)
> Sy SR
Wishde =1 g=i 2O 0O ’mr B
) ’mM-q
M-q-1 m,
m a g aL (0,-0. ) il
" ‘b +:-e M M-qu(O)( 5 e i U G e ™ Lb s
x (0g) = q 1=0 q
q i#r

3 (o.,,)dc, ¢ <M
m o i+l

0, q=M (3.10)

(Note: 1In the general case x k(0 ) would be a vector of a dimension
consistent with the qt th Jordanqb]ock).

d P >
e Pi j(t'a)9 i,j=1,...,N; 0 so 5t ,
’

is the i,jth element of the conditional covariance matrix

A A T
P(t,0) = E[(&(t) - £(t]t)) (£(0) - ECoft)) | . ] (3.11)
z
Also recall [10] that pP(t,0), o St satisfies the following differential
equation
oP(t,0) vl
. [F(t) - P(t)H (£)R (L)H(L)YIP(t,0) . (3.12)

Now, if we differentiate the nnbmenting state vector

v % ). (ﬂMN (3.13)

T T
x() [xc-) X(-)s




then utilizing (3.12), we find that =

alx(t) = al(0) Ix(t)de + B (O)x(t)dt + y: lx(t)gi(t)dt (3.14)
i=1

where al(-), 61(-), {Y:}Nl are determined by the problem parancters
and the error covariance P(-), the (MxM) blocks of ul(-) and [51(-) are

'; . upper triangular and {y:} ?_1 are block diagonal matrices with identical
- - =
strictly upper triangular blocks given by
b B B = - 0]
0o 0 bl o 0
| N\ 2\ | A 1
| N : > a block of Y (3.15)
et ;
| b,
! . N -2 9
' b, 0
N
plas = ol s o O

Now we may again apply Lemmas 4 and 5 to (3.14), and get
N

dl;{\(qt) = (ozl(t) + ¥y gi(tlt))lg(t(t)dt + sl(t)?c(clt)dt
i=1
N 1143 11 1.2 N Rt
+ v, X (t)t)de + [x (tle), x(elt),..., x (LIE) JH(EIR (t)dv(t)
j=1 (3.16)

where the '"new' set of augmenting states are

2 : 1% o ok T p
Lies 8 o3 ey 20y, #8038

k Kk j,k j, kT
O3 L & B TRRNE L
N M-q Op C1 OM-q-1
m . rz r.=1 '(C {-‘”{w Pj’mr (U.o’url)rk’mr.(oo’orZ)
1ot ag=l 1% 2 1 2
ry¥ry
a (og_ -0 ) m a (o_ -0 )
qitry Ty r1+1 T qiry, " T, r2+1
. q+r, © i
ik 1
[e) =
e (o) :J
|
*MM-q Meg-1 g% % ™51
e xﬁ(O)( ,]r 3 e 'bqiigm (()_i ’A))dnj Dl)’
R g, i+l
1#r1,12
q < M-1
0 q=M-1 (3.17)




Now the new augmenting state vector

T T T 2
2 1.1 1.2 1N
xC) D ['x () 5 %) ., JTRMN (3.18)
analogous to (3.16), is scen to satisfy the differential equation
N
2 2 2
dzx(t) = (t) x(t)d + B?(t)lx(t)u; + X yi Zx(t)_&i(t)dt (3:19)
i=1

in which MxM blocks of az(-), ﬁz(-) and yi have the same properties as
those of al(-), Bl(-) and yi(-) respectively with a block of yi obtained

by setting = 0 in the block (3.15) of y: . The above process can

By.2
now be iterated and it is clear that this sequence will terminite at the
Mth application - in the general case, this would be the total number of
Jordan blocks - of Kushner equations since y¥-1 =0, i=1,2,...,N. Col-

lecting together the differential equatiomns for x(-),lx(.),...M_lx(.), wve

sce that the dimension of the resvlting nonlinear filter equals

(N!MN%MN2+...XMN)M-1 = kﬁf (NM-I). The filter form (3.8) follows upon
writing the innovations term in the standard bilinecar foimat, which also
N
i=1

consists of (strictly) upper

e e e —————————

reveals the fact that the matrices (?:}
MxM blocks. We thus see that ﬁis

consist of upper triangular

N
i=1 )N
triangular (M xM) blocks, while {; (t% — and {;i } j1 consist
of (MxM) blocks that are upper triangular. It is, therefore, casy to
sce - if we carry out matrix multiplications blockwise - that the set of

ic ‘e = S 1 oC
matrices {;dc «(A (t))|i20;i=l,. .} also have (M xM) blocks

s N l=051 ;s
all upper triangular. Consequently the set

k %*
Ad (E;
(adl . (a*(£))) ’|t>0;i,5=1,---,N;k,r=0,1,2,---}
i
has (M xM) blocks that are all strictly upper triangular. lience, block-
wise multiplication shows that the associative algebra generated by them
is nilpotent of order K. 0.E.D.

The filter structure revealed in the above theorem has some interest-
ing features worth noting. We first see that analogous to the case of
linear signal models, the "drift" terms in (3.8) do preserve the bilinear
structure of the signal model (2.14) and also inherit its nilpotency
property; nevertheless the matrix A*(:) is time varying although the
matrix A is constant. Secondly, the filter is bilinear in the innovations
as well. Also observe that the state spaces of both the signal model and |
the filter are (not necessarily identical) nilpotent group manifolds.
This suggests that it may be worthwhile to investigate optimal filters
under criteria that are defined on such manifolds. Such an approach for
abelian groups was followed in [1].

4. COMPUTATIONAL CONS|1DERATIONS
Realization of the filter (2.16) in the form of & block scchematic
is shown in figure 1 on the following page. The practical iuportance of
the bilinear property of the above filter is that a rcal-time wnalog im-
plementation of the filter is still possible with casily available and
cheap hardware consisting of integrators, sumners and multipliers.




T

B N :
et 0 =B Z Bilinear - . N i
fiYeer f— T2 1 syiten x*(./.\hkd X(-/4) s

2(-) o () N T
A }
ilécati tha\ion ?
Solver %
Figure 1

However, a major drawback of the filter is its '"curse of dimensionality".
The following example illustrates the problem and shows one way of its
mitigation. Example: We now apply the algorithm developed in the theorem

to construct the optimal filter for the case of system (2.3) with M = 3,

0 0 ) b{ 0
N =2 and A a, 0|, B =10 o b; , &= 1,2
0 a3 0 0 0

The filter is found to have a dimension of 21, having required 3
applications of Kushner's equations. We enunerate below the nonzero

3x3 blocks of A" (t), { }k . {C‘k} k=1 and L. The notation used
is as follows:

Ti’J: i,jth block of matrix T
(t): i,jth elements of matrices ™(t) and
-1
[F(t)-P(t)HT (tJR(t)H(t)] respectively.

®(:): Kronecker delta function.

(t),e

Pi,3 1,3

and finally, for any nxn matrix T and 0 s {1 < n,

Ti: Matrix T with last i rows and colunns replaced by zeros.

*1,1 S e Lk
A (t) = A; A (t) = Bj-l,j—-2,3 ;
: i, j 1 1
() = kflp(i-l),k(t)gk; A ey = L& +c(i_1)’(j_1)(t\]3],
i’j=2’3;
2(t) = 2)2 (t) '(c) = 2[A2+< (t)17‘1 j= 4, 5;
1 1 i li ] 1,(j-3) 3..) 3 k]
2 : 2
2(0) = TPy (008, 1=5,6; A703() = TP (0B,
2,k k ok
k=1 4 k=
1,3 & 7/ 2 2 PN T
A (t) o [A ne 62,(j-3)(t)13]s 1—5,6, J"',S,
*i,] - BEe 2 - ¢ !
A (t) = (A" + <l’(j_5)(t)1 ), $a5,6; 3-6,7;
i
:‘:7’3 ! ; l
A (t) =2 § '2,k(t)Bk'

k=1




deey = 2[a? + ¢, ( )(:)13_ i 8,7
*1,1 y $ »1 i
Bk = Bk’ Bk i=2,3; k=1,2
*1,2 o " N e o
C, = 6(k-1)13 i G = 5(k-2)-15 ;
* * 2
Ckz’a = 6(k-1)-1§ - Ckz’6 = 6(k-2)-13 )
%*3,5 2 *3,7 2
] = 2 . ’ - N . = 2
c, d(k -1 5 C &(k-2) 15 ; k =1,
e = Xy

In the above matrices, note the i1cpetition of certain block rows
and the presence of some all zero 1ows. This allows us in effect to
reduce the filter dimension from 21 to 10. This argument can be extended
to the general case, and it is not difficult to show that the dimensional-
ity cen be reduced in this way from

M M¥-1 N+i-1
N i (N'-1) to o M-1) ( . )
i=0
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